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An inviscid transonic theory appears to be inadequate to describe the flow 
near the throat of a converging-diverging nozzle during the transition from the 
symmetrical Taylor (1930) type of flow to the subsonic-supersonic Meyer (1908) 
flow. A viscous transonic equation taking account of heat conduction and longi- 
tudinal viscosity has been developed previously (Cole 1949; Sichel 1963; 
Szaniawski 1963). An exact, nozzle-type of similarity solution of the viscous 
transonic equation, similar to the inviscid solution of Tomotika & Tamada 
(1950), has been found. This solution does provide a description of the gradual 
transition from the Taylor to the Meyer flow and shows the initial stages in the 
development of a shock wave downstream of the nozzle throat. The solution 
provides a viscous, shock-like transition from an inviscid, supersonic, accelera- 
ting flow to an inviscid, subsonic, decelerating flow. 

1. Introduction 
As the back pressure decreases, the flow through a converging-diverging 

nozzle changes from one which is symmetrical with respect to the throat to 
an asymmetrical flow with subsonic flow upstream and supersonic flow down- 
stream of the throat. The two types of flow are illustrated in figure 1 (b). The 
transition between these two classes of nozzle flow has formed the subject of 
many investigat,ions. Many important features of such transitional flows are 
adequately explained by a simple one-dimensional or hydraulic theory with 
normal shocks in the supersonic portion of the nozzle located to satisfy the 
downstream boundary condition on pressure. However, to resolve the details of 
the flow near the nozzle throat, which is intimately related to the nozzle-wall 
curvature, solutions of the two-dimensional or axisymmetric gasdynamic 
equations must be investigated. The initial phases of the transition during 
which shock-wave formation first starts in the neighbourhood of the throat are 
of particular interest; however, the results of a number of investigators indicate 
that the inviscid equations alone are unable to provide an adequate explanation 
of such a transitional flow. It appears that, to explain properly the initial stages 
in the shock formation, or development of shock-wave structure near the 
throat, at least the effect of longitudinal viscosity must be included in the con- 
servation equations. Development of a viscous theory of such transitional 
flows forms the subject of the present paper. 
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The two-dimensional asymmetrical flow a t  a nozzle throat was first calculated 
by Meyer (1 908) using a truncated series solution of the exact potential equation 
of an inviscid perfect gas. The calculations are straightforward and the solution 
appears to give a quite reasonable description of subsonic-supersonic nozzle 
flow. A similar series approach was applied by Taylor (1  930) to flow near the 
throat of a two-dimensional symmetrical nozzle. As the maximum velocity 
on the nozzle axis increased, Taylor’s calculations showed the development of 
pockets of supersonic flow near the nozzle surface. Taylor, however, found 
that, carrying terms up to the fourth degree in the double series in x and y, sym- 
metrical solutions no longer exist when the peak velocity on the nozzle axis 
exceeds some maximum value. For a ratio h/R = a, where h is the half height of 
the nozzle and R the radius of curvature of the wall, there are no solutions for 
maximum velocities exceeding 0.855a, where a is the speed of sound. 

Gortler (1939) showed that the series employed by Taylor tends to diverge 
as the velocity near the throat approaches sonic velocity, and suggested that 
the difficulty in Taylor’s solution may be due to the neglect of higher-order 
terms which are cut off by the truncation process. Gijrtler (1939) attempted to 
extend Taylor’s solution to the case of transitional flow by relaxing the require- 
ment of symmetry with respect to the nozzle throat; however, a number of 
artificial assumptions regarding the series coefficients were required, making 
the convergence of his solution suspect. 

Emmons (1946) used the method of relaxation to obtain numerical nozzle- 
flow solutions of the inviscid gasdynamic equations. Emmons (1946) postu- 
lated that the transition from the symmetrical Taylor to the asymmetrical 
Meyer type of nozzle flow starts with the formation of shock waves within the 
pockets of supersonic flow near the wall. This postulate was borne out by the 
calculations. Below a peak centreline Mach number M of 0.812 the compressible 
solutions were very much like the flow through a venturi. However, as the 
maximum centreline Mach number increased beyond this value, shock waves 
had to be placed in the pockets of supersonic flow in order t o  eliminate residuals 
in the relaxation calculations, and for sufficiently large M the shock waves 
within the two supersonic pockets joined at  the nozzle centre. On the other 
hand, the numerical results contained several inconsistencies. The appearance 
of shock waves is sudden; that is, rather than gradually growing outward from 
some point in the flow the shock wave, when it first appears, is of finite length. 
A second difficulty is that there is a discontinuous rise in velocity immediately 
behind the shock waves. Emmons (1946) points out that this effect is caused by a 
discontinuity in the streamline curvature which occurs when a weak normal 
shock wave is adjacent to a curved wall. A similar effect was observed experi- 
mentally by Ackeret, Feldman & Rott (1946) and has also been discussed by 
Oswatitsch & Zierep (1960) and by Pearcy (1962). Since gradients behind weak 
shock waves adjacent to curved surfaces must be of the same order as gradients 
within the shock structure, the assumptions which permit the use of Hugoniot 
jump conditions across the shock are clearly violated. As Emmons (1946) has 
observed, a perfect-fluid theory including shock discontinuities across which the 
Hugoniot conditions hold appears to be inadequate to describe the nature 
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of the transitional flow when shock waves first appear within the nozzle, rather 
a theory which includes the effects of fluid viscosity is required. 

All the solutions described above are in some sense approximate solutions of 
the inviscid gasdynamic equations. Tomotika & Tamada (1950), on the other 
hand, found a mathematically exact nozzle-type solution of the transonic equa- 
tion, which is an approximate equation valid only for regions of inviscid flow 
with Mach numbers near one. This approach avoids questions of the convergence 
of the series or of the numerical methods. Tornotika & Tamada (1950) obtained 
an exact similarity solution of the transonic equation describing both the Taylor 
and Meyer type of flow; however, they concluded that the flow of Meyer’s type 
cannot be approached in a continuous manner from the group of solutions for 
the flow of Taylor’s type, at  least on the basis of the inviscid equations. 

It appears that an adequate explanation of the transition from the Taylor- 
to the Meyer-type flow requires consideration of an equation which includes 
viscous terms such that the formation of shock waves is inherent in the equa- 
tions themselves. It has been shown (Cole 1949; Sichel 1963; Szaniawski 1963; 
Ryzhov & Shefter 1964) that, in regions of transonic flow in which the longi- 
tudinal or compressiveviscosity is dominant such asin theinterior of a weak shock, 
the flow can be described by an equation which is identical with the transonic 
equation except for an additional viscous term, and which has sometimes been 
called the viscous transonic or V-T equation. A nozzle-type similarity solution, 
similar to that of Tomotika & Tamada (1950), has been found for the V-T 
equation and appears to provide a reasonable picture of the gradual transition 
from the Taylor to the Meyer type of flow. This viscous transonic solution 
forms the subject of this paper; however, because of the close relation to  the 
work of Tomotika & Tamada (1950) their solution will first be discussed in 
detail. 

‘ 

2. The solution of Tomotika and Tamada 
The approximate equations for inviscid two-dimensional transonic flow, 

which have for example been derived by Guderley (1962), can be written in the 

where EU = @/a*) - 1, 

x = $(y + 1) %/A,  Y = ( [y  + 1]/2)8 E+j/Ji, 

with a* the critical speed of sound, h a characteristic dimension of the flow, and 
E a small parameter proportional to the deviation of E/a* from unity. In  the 
above equations barred quantities are dimensional. Upon introducing the trans- 
formation 

1 u = Z(S) + 20-2Y2, 

x = X+.Y2, 

Tomotika & Tamada (1950) found that equation (1)  collapses to the non-linear 
ordinary differential equation 

22’’ + (2’ - 2 4  (2’ f .) = 0. (3) 
49-2 
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Since the flow described by equations ( 2 )  is symmetrical with respect to the X- 
axis, it can be considered t o  represent a nozzle flow. Tomotika & Tamada (1950) 
obtained the implicit analytical solution 

(2 - 2aS)2 (2 + a8) = 2 a 3 / ~ 3  (4 
for equation (3), where the constant of integration a determines the nature of the 
solution. The arbitrary constant a, for which Tomotika & Tamada originally 
used the value 1.0, determines the slope of the two special solutions 2 = SuS, 
and 2 = - aS corresponding to a = 0. The more general transformation above 
was introduced in a later paper by Tomotika & Hasimoto (1950). 

n 

Branch ‘-1 0 -  P - @  0 -  P - a  
Limiting Taylor flow Meyer-type flow Taylor-type flow 

(b )  
FIGURE 1. (a)  2 versus S from the solution of Tomotika & Tamada (1950). (b)  Nozzle 

flows corresponding to the solution of Tomotika & Tamada (1950). 
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Using the condition of irrotationality, Tomotika & Tamada were able to 
compute the ij-velocity component and hence to determine the streamlines of 
the flow. 

The behaviour of the function Z(S), which is equal to the velocity U on the 
nozzle axis, is reproduced in figure 1 (a )  for various values of a, and for a = 1.0. 
The solution curves have four branches separated by the special solution curves 
Z = 2aS and 2 = - aS corresponding to a = 0. Figure 1 (b)  shows that nozzle 

dZjdS 

\ ‘ I  
FIGURE 2. Phase-plane behaviour of the Tomotika & Tamada solution. 

flows constructed from branch A solutions correspond to the Taylor-type, 
symmetrical, nozzle flow. As a -+ 0, curves of branch A asymptotically approach 
(l)-P-(4), which has a discontinuous slope at the sonic point P and represents 
the limiting Taylor flow with the maximum velocity on the nozzle axis just sonic. 
The special solution Z = 2aS yields the Meyer-type asymmetrical flow, as shown 
in figure 1 (b ) ,  and, as shown later, is identical with the first few terms of the 
Meyer solution. Branches A‘ and B have infinite slope at  the sonic point, and 
so are not physically meaningful, while branch B‘ is entirely supersonic and 
so is not of interest here. The sonic point Z = 0 is a singularity, for it is clear 
from equation (3) and figure l ( a )  that only the singular solutions with 2’ = 2 a  or 
2’ = - a can pass through the sonic point with finite 2 or curvature. It should 
be remarked that the direction of the flow as indicated by the arrows in figure 
1 (a )  and ( 6 )  seems to have been reversed in the original paper. 

Tomotika & Tamada (1950) suggested that the limiting Taylor flow (l)-P-(4) 
will change discontinuously to the Meyer type (l)-P--(2) provided the nozzle- 
exit conditions change sufficiently. However, their solution does not permit a 
continuous transition from the limiting Taylor solution to the Meyer solution, as 
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becomes particularly apparent when the solution is plotted in the phase plane 
(see figure 2). In  this plane the sonic line Z = 0 acts as a barrier such that sub- 
sonic solutions can never become supersonic and vice versa except for the two 
singular solutions Z = 2uS and Z = - us. The question now to be examined is 
whether taking account of the viscosity in the formulation of the flow equations 
can resolve this difficulty. 

3. Viscous transonic nozzle solution 
Within the structure of shock waves the terms of the Navier-Stokes equation 

due to compressive or longitudinal viscosity, and due to heat conduction, are of 
the same order of magnitude as the non-linear convective terms, for it is the 
balance between the steepening convective terms and the smoothing dissipative 
terms which leads to the existence of steady-state shock-wave structures. One- 
dimensional Navier-Stokes solutions of shock-wave structure are well known 
(Hayes 1958); however, there are regions of flow, which might aptly be called 
thick shock waves, where the main effect is still a balance between convection 
and dissipation but where the flow is not necessarily one-dimensional. 

In  the transonic case, approximate equations describing the flow within such 
a thick shock layer have been derived from the full Navier-Stokes equations 
(Sichel 1963; Szaniawski 1963) by using an expansion in the small parameter 
e coupled with stretching of the co-ordinates. The resultant first-order equations 
in normalized form are as follows: 

~i,,-2uux+v, = 0) ( 5 )  

ul- = v,. (6) 

x = ~ ( q q ) ,  Y = Ark+(g/7), (7) 

The dimensionless co-ordinates X ,  Y are in this case related to the physical 
co-ordinates Z, ?j by 

where A = r { l +  (7- l) /P;]-l ,  I' = (I/a) (apalap),, 

and for a perfect gas r = +(y+ 1). P: is the Prandtl number based on the 
compressive viscosity p", which is related to the bulk and shear viscosities 
p' and p by 

and is also sometimes called the longitudinal viscosity (Hayes 1958). The quantity 

7 = p*"/Ep*a* = v*"/ea*, 7 is given by 

and is of the same order of magnitude as the thickness of a weak shock wave 
(Lighthill 1956) with upstream critical Mach number MT = 1 +s. Thus the 
characteristic dimension used to normalize the co-ordinates is of the order of 
the thickness of a weak shock wave. U and V are related to the actual 5 and 
components of velocity by 

p" = Qp+p', 

iila* = 1 +EU,  G/a* = EQrW. (8) 

Equation (8) expresses the well-known fact that in transonic flow, when 

(.tila*) - 1 N O(s) ,  then @/a*) N O(eg). 
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Using the condition of irrotationality (6) to eliminate P from equation (5) 
now yields the following equation for U :  

Except for the viscous U,,, term (9) is identical with equation (l), the inviscid 
transonic equation expressed in terms of U .  

Again using the transformation (2), equation (9) for U reduces to the ordinary 
differential equation 

2” - 228” - 2(2’ - 2a) (2’ + a) = 0. (10) 

Thus Tomotika & Tamada’s similarity transformation also works for the 
viscous transonic equation. The resultant solution again represents a nozzle- 
type flow symmetrical with respect to the X-axis. As before, the function Z(S) 
represents the centreline velocity distribution. Equation ( 10) is identical with 
(3) except for the viscous 2” term. 

From equation (10) it is evident that the special inviscid solutions 

2 = Bas, 2 = -aS (11) 

are also solutions in the viscous case. With the presence of the viscous 2” 
term in (lo), the sonic point 2 = 0 is no longer a singularity so that solution curves 
passing through the sonic point arenot restricted to the two special solutions (11). 
So far it has not been possible to obtain any other analytical solutions of equation 
(10); however, it should be possible to obtain solutions Z(S) numerically. 

Equation (10) is such that, for finite 2, 2’ and z”, choice of initial conditions 
Z(S,), Z’(X,), and Z”(S,) at some point So will determine a unique solution 
(Coddington & Levinson 1955); however, the question of what initial conditions 
to choose is certainly not a trivial one. In  what might be termed the direct nozzle 
problem specification of the nozzle contour and conditions upstream and down- 
stream of the throat lead to a boundary-value problem for the viscous transonic 
equation (9). Sichel(l963) has discussed the question of properly set boundary 
conditions and given a uniqueness proof for the viscous transonic equation valid 
for subsonic flows while Szaniawski (1964a, b )  and Kopystynski & Szaniawski 
(1 965) have investigated the direct viscous transonic nozzle problem using series- 
expansion methods. The present problem, on the other hand, is indirect in that 
the question asked is whether any of the Aow fields corresponding to solutions 
Z(S) of equation (10) satisfy boundary conditions representative of flow through 
a nozzle throat, while also representing the transition from the Taylor to the 
Meyer type of flow. In some similarity analyses, such as the Blasius-flat-plate- 
boundary-layer solution, the boundary conditions which the ordinary differential 
equation obtained from the partial differential equation must satisfy are pre- 
cisely specified ; however, this is not the case here. All that is known is that the 
transitional solutions being sought should start where Z(S) < 0 (subsonic flow) 
and Z’(S) > 0 (velocity increasing), must pass through a maximum which may 
be either subsonic or supersonic, and then must decrease; however, at this point 
it is not even known whether such solutions of equation (10) exist. Consequently 
the general properties of equation (1 0 )  must first be studied to provide a guide for 
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the evaluation of numerical solutions. For this purpose the qualitative behaviour 
of solution trajectories in the phase space will be investigated. 

Since equation (10) is of third order, it  becomes necessary to consider the 
behaviour of solution trajectories in the three-dimensional 2, Z', 2" phase space, 
a more difficult problem than the more usual phase-plane analysis of second- 
order systems. Although equation (10) can be integrated once to yield the second- 
order equation 2" - 222' + 20-2 + 40-2s = c; 
with Cl a constant of integration, equation (12) contains the independent variable 
S ,  so that it is no longer autonomous, and a separate phase plane is needed 
for each S. Hence, it is more straightforward to deal with the original third- 
order equation, and with the three-dimensional phase space. 

Letting p = Z', q = p' = 2 ,  the solution trajectories in the (2, p ,  q)-space 
satisfy the equations 

There are no singular points where dp = d q  = dZ = 0 simultaneously; however, 
the trajectories p = 20-, q = 0 and p = -u, q = 0 corresponding to the two 
inviscid solutions 2 = 20-S and 2 = -0-8 are singular lines in the sense that 
dp = dq = 0 on each of them. 

A composite picture of the phase space behaviour can be gained by studying 
the two-dimensional trajectoriesobtainedwhen2 in equation (13) is held constant. 
These curves in the planes 2 = const. are not solution trajectories but are tangent 
to the projections of these trajectories at  the point where they cross the Z = const. 
plane. In  these (q,p)-planes the points (0, -c) and (0,20-) are now singularities 
where dp = dq = 0. Using well-established methods for studying the singu- 
larities of second-order systems (Minorsky 1962), it has been shown (Sichel 
1965) that the point (0,20-) behaves as a saddle point for all values of 2;  however, 
the directions of the two separatrixes of the saddle point do vary with 2. The 
singularity (0, - 0-), on the other hand, changes in character with 2 from an un- 
stable node to an unstable focus to a stable focus and finally to a stable node 
corresponding respectively to the ranges 

2 > 4(60-), 2/(6a) > 2 > 0, 0 > 2 > - 4(6a), and 2 < - 4(60-). 

A typical set of such trajectories, plotted by the method of isoclines, are shown 
in figure 3 for the particular value 2 = - 1. The parabolas in figure 3 are lines 
of constant slope. 

In  assessing the significance of the above results, it  is extremely important 
to recognize that these ' crossing trajectories ' are not solution trajectories, 
and that there are no true singularities in the phase space as for example in 
the case of the one-dimensional shock wave (Ludford 1951) or detonation struc- 
ture (Wood 1961). The phase-space behaviour is, however, largely determined by 
the behaviour of the solution trajectories near the singular solutions 2 = 2 d ,  
2 = - OX. Solutions starting near the 2 = 2aX trajectory, no matter how close, 
will ultimately deviate from this trajectory as S increases. From the crossing- 
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trajectory diagrams and the behaviour of the crossing trajectories near the 
singularity at q = 0, p = -v it appears that there may be solutions starting 
infinitesimally near 2 = 3vS and withp < 2cr and q < 0, which will pass through 
a maximum in 2 on the planep = 0 and will then, as 2 decreases, asymptotically 
approach the solution 2 = - vS. Numerical integration of equation (10) indicates 
that such solutions do indeed exist. 

) 7 - 2.0 

\ 

FIGURE 3. Crossing trajectories for 2 = - 1.0. 

Figure 4 shows a set of numerical solutions Z ( S )  obtained by starting the 
integration very close to the singular solution 2 = 2vS for different initial values 
of 2. Starting from an essentially subsonic velocity profile on the centreline 
this sequence of solutions shows the gradual development of what appears 
to be a shock wave, and these are exactly the type of transitional solutions being 
sought. 

For the starting-points in the numerical calculations 2; was chosen very close 
to 2-0 for different values of 2,. 2; was adjusted to make the integration con- 
stant C, = 0 for then, as can be seen from equation (le), the phase of Z(S) 
will be such that the solutions will be asymptotic to 2 = 20s and 2 = - a#. The 
starting values used in calculating the curves in figure 4 are given in table 1. 

The (p,p)-plane projections of trajectories corresponding to curves A and C 
of figure 4 are shown in figure 5 and support the results of the ‘crossing-trajec- 
tory’, singular-point analysis. Because of the unstable nature of the special 
solution p = 2v, q = 0, numerical solutions, though started very close to this 
solution, do not in general correspond exactly to one of the solutions which 
asymptotically approaches Z = 2vS, as is evident from the special plots showing 
the detailed behaviour near the two inviscid solutions. The situation is similar to 
that encountered in plane-shock-structure problems, where numerical integration 
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t 
FIGURE 4. Numerical solutions of the equation Z”’-2(ZZ’)’+- 2~72’+40-2 = 0 

for CT = 1.0. The solutions are asymptotic to z = 2s and z = -5’. 

FIGURE 5. Projection of the solution trajectories in the (Z’, 2”)-plane, showing also the 
detailed behaviour near 2” = 0, 2’ = 2-0 and near 2” = 0, Z’ = - 1. Numbers near 
circled points indicate corresponding values of 2. - , Subsonic-supersonic ; - - -, 
subsonic; @,, starting value. 
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must be started near the downstream saddle point. In  figure 5 the points 
preceding the starting values were obtained by backward integration. A Runge- 
Kutta fourth-order method was used to integrate the equation. 

As the maximum supersonic value of Z(8) increases, it can be seen from 
figure 4 that the slope Z’(S) in the transition region becomes progressively steeper. 
If the dimensionless velocity upstream of a weak normal shock is 1 + cUl, then 
the downstream velocity will be 1 - cU1 provided the Hugoniot conditions hold. 
In figure 4 the downstream velocity at first overshoots the Hugoniot value; 
however, as Z,,, increases the jump conditions more closely approach those 
of a normal shock. As Z,, increases the large values of 2” and 2‘ in the 
transition region make the terms 2” and 22’ dominant in equation (12); however, 
the equation 2” - 222‘ = 0 

Curve ... A B C D E a 
2 0  - 7.88 - 3.59 - 0.10 1.90 3-90 5.90 
2; 1.87 1.901 1.90 1.90 1.90 1.90 
2; - 0.0463 - 0.0695 - 0.180 - 0.580 - 0.980 - 1.380 

TABLE 1. Starting values for the singularity solution 

formed by keeping these terms alone is just the one describing the Taylor (1910) 
structure of a weak shock wave. Thus, as Z,,, increases, the supersonic-subsonic 
transition on the axis of the nozzle seems to approach the structure of a weak 
normal shock. These results further suggest that with B < 1 solutions will 
be obtained such that there is essentially a weak normal shock near the nozzle 
axis which is modified by non-Hugoniot effects only for sufficiently large Y. 

4. Construction of flow fields 
A complete evaluation of the similarity solution described above requires 

the computation of the corresponding nozzle flow fields. For this purpose isotachs 
and streamlines must be determined and it is also necessary to relate the dimen- 
sionless solution in the (X, Y)-plane to the physical (5, ?j)-plane. 

Since the dimensionless speed q = p/a* is given by 

q = ( ( 1 + ~ u ) 2 + ~ 2 r } +  = ~ + s u + o ( s ~ ) ,  (14) 

it  follows that isotachs correspond to contours of constant U to the present 
order of approximation. The streamline slope (dTj/d5), is given by 

(dydz) ,  = (qq = QrW + o(&, 

(d Y ~ X ) ~  = m 7. 

(15) 

(16) 

v = 2BY2+40-2XY+f(Y), (17) 

or in terms of the stretched co-ordinates X and Y 

From the condition of irrotationality (6) and the similarity transformation (2) 
it  follows that 
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wheref( Y )  is a function of Y. From the V-T equation (5), and equation (12) for 2, 
it then follows that 

(18) f( Y )  = +a3Y3-C1Y +c,. 
Since V ( X ,  0) = 0 for nozzle flow, C, = 0. The constant C, depends upon the initial 
conditions used in evaluating Z and upon the origin X, chosen for S,  and from 
equation (12) is readily seen to have the value 

c, = Z/l(S,) - 2Z(X,) Z'(8,) + 2 ~ 2 ( S , )  + 4a2S0. 119) 

C, merely determines the phase of the solution Z(8) with respect to the S co- 
ordinate. It fbllows that 

v = 2Y((TZ+2a2x+ga3Y2-+C1), (20) 

which is identical with the result of Tomotika & Tamada (1950) except for the 
constant C,, which they set equal to zero but which has been retained here. 
Streamlines can now be determined by integrating equation (16) for different 
initial conditions, using V as given by (20). 

Any streamline can be considered as the wall of a nozzle; however, it is of 
particular interest to choose a streamline with a predetermined ratio of nozzle 
half height to radius of curvature at the throat in order to compare the viscous 
transonic results to  the inviscid calculations of Taylor (1930) and Tomotika & 
Tamada (1950). On the nozzle wall V = 0 at the throat so that 

aZ( x, + (7 Y,") + 2a2xx, + $a3 Y," - +cl = 0,  (21) 

where the subscript t refers to the throat co-ordinates. Letting h be the half 
height at the throat of the nozzle and Rt the radius of curvature of the wall, it 
follows from equations (16) and (20) that 

h/Rt = h(dzij/dZ2)t = 2eY;(aZ'(X, + fly,") + 2 ~ 9 ) .  ( 2 2 )  

Equations (2 1) and ( 2 2 )  are sufficient to determine the throat co-ordinates 
X t , q  once h/R, and E are specified, and with X,, 8 known the wall streamline 
is obtained by integrating (16). 

The definition of the parameter B ,  which characterizes the maximum devia- 
tion of the fluid velocity from the sonic value a*, is arbitrary, but usually 
related to the particular problem under investigation. In the study of non- 
Hugoniot shock structure (Sichel 1963), it was convenient to let e = (Ul/a*)- 1, 
where iil is the velocity of the undisturbed flow upstream of the shock wave, 
while in flow about bodies the choice 8 = (N, - l) ,  where M, is the Mach number 
of the undisturbed flow, is frequently made. In  the present case, since neither 
of the above definitions is suitable, e represents the value of @/a*) - 1 correspond- 
ing to points where U = 1. As a consequence of this definition only those nozzle 
solutions for which U N O( 1) are consistent with the expansion scheme used here. 

It now is necessary to establish the connexion between the nozzle solution 
above, which is expressed in terms of the dimensionless co-ordinates X and Y ,  
and the physical plane. The V-T equation in the dimensionless form (9) pro- 
vides the basis of a viscous transonic similitude. For each solution of equation (9) 
there exists a family of physical flows corresponding to different values of the 
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parameters E ,  I?, v*“, a* and Pr”. The members of this family are similar, and each 
point X ,  Y of the dimensionless solution defines a set of corresponding points 
in the family of similar solutions. This similitude is closely related to the more 
conventional transonic one, discussed, for example, by Guderley (1962); the 
main difference between the two being the nature of the characteristic dimension. 
In the conventional similitude the length h in equation (1) is a characteristic 
dimension of the flow such as the chord length of an airfoil, for example; however, 
in the viscous transonic case the characteristic length q introduced in equation ( 7 )  
is of the order of the thickness of a weak shock wave. With decreasing 6, h will 
remain fixed however 7 must increase. 

From equation (7 )  it follows that for given X and Y corresponding values of 5 

and g are given by 5 = (?/A) x, g = (q/Ar+e+) y ,  (23) 

so that for fixed fluid properties and a*, 5 - +and3 N €-*at corresponding points 
since 7 = v*“/ea*. The streamlinesin the (a, y)-plane corresponding to the stream- 
lines passing through a particular point X,, Y, in the (X, Y)-plane will be 
called corresponding streamlines. The reference point Z,, g1 transforms according 
to (23), but since v N O(&) the streamline slope, djj/d%, must also be O(d) .  On 
the other hand, if all points on corresponding streamlines transformed according 
to (33) the result would be (dyldx) N O(E-4). This strange behaviour, which was 
also noted by Guderley (1962), is responsible for the appearance of e2 in equation 
(16) for streamlines in the ( X ,  Y)-plane. As a consequence, even though 2, U ,  
and V are functions only of X and Y ,  the streamlines in the (X, Y)-plane will 
vary with the parameter E .  

The relation between the dimensionless and physical nozzle solutions is 
now established. In  the %-direction the length of the region of interest will be 
O ( q ) .  Since v*”/a* is of the order of a mean free path, 7 = v*”/a*e will be very 
small unless the density is low or E is very small. The half height h is the other 
significant dimension of the flow. From equation (22) it follows that streamlines 
with h/R, fixed will not at  the same time be corresponding streamlines. Thus 
assuming that (rZ’(X,+ r Y,“) + 2 ~ 7 2 )  N O( 1) it follows from (22) that 

yt N O((h/R,)+ (V*”/U*E’)), (24) 

h/7 (W, (25) 

and, if (h/R,)* N O( l),  it follows that 

so that the half height will be much greater than the thickness of a weak shock 
provided that e << 1. 

For the particularly simple inviscid solution, 2 = 2 4 8  - 8J, explicit expres- 
sions for the isotachs, the vertical velocity, and the streamlines can be found, 
and it is readily shown (Sichell965) that in terms of the physically more meaning- 
ful dimensionless co-ordinates Z / h  and g/h 
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In  the case of a perfect gas with I? = Q(r + 1) equation (26) is identical with the 
nozzle velocity distribution obtained from the first three terms of Meyer's double 
expansion for the velocity potential (Meyer 1908; Hall & Sutton 1962)' except 
that in accordance with the discussion above the choice of the characteristic 

1 .o 
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Z / h  

(a)  

1.0 

- 1.0 1.0 

FIGURE 6. For legend see facing page. 

nozzle dimension is no longer arbitrary. In  equation (26) p = h/R,, and from 
equations ( 2 2 )  and (23) it  is readily shown that the nozzle half height h is related 

The point so/h is the location of the sonic point on the nozzle axis. Integration 
of equation (16) for the streamlines is straightforward and will not be reproduced 
here. Isotachs and streamlines corresponding to the Meyer-type flow with 
u = 1 are shown in figure 6 (a) plotted in the (E/h, q/h)-plane. The wall streamline 
has been chosen so that h/R, = 0.25 as in the calculations of Taylor and of Tomo- 
tika & Tamada. 
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I n  the more general case streamlines can only be obtained by numerical 
integration of equation (16), and it is no longer possible to obtain simple expres- 
sions for U and V in terms of Z/h and g/h.  Figures 6 ( b ) ,  (c) ,  and ( d )  show the 
streamlines and isotachs corresponding to solution curves A ,  B,  and C in figure 4. 

- 1.0 

- 1.0 

Throat 

5/h 

(4 
FIGVRE 6. Isotachs and streamlines in nozzles for B = 0.1, G/a* = l + c U ,  y = 1.4, 
/3 = h/R, = 0.25. (a)  2 = 2s (Meyer's solution), ( b )  curve A of figure 4, ( e )  curve B of 
figure 4, (d )  curve C of figure 4. 

Figure 6 (b )  represents a Taylor-type nozzle flow with subsonic velocities through- 
out but regions of high-velocity flow near the nozzle wall. I n  figure 6 ( c )  the 
maximum centreline velocity is just sonic, while there are pockets of supersonic 
flow near the nozzle wall. Upstream of the throat the flow is similar to the Meyer- 
type flow of figure 6 ( a ) ,  but downstream a certain crowding of the isotachs as 
compared with the Taylor flow of figure 6 ( b )  is evident. I n  figure 6 (d )  the velocity 
along the axis becomes supersonic beyond the throat but this supersonic region 
is followed by a rapid deceleration to subsonic flow. Figure 6 ( d )  appears to 
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indicate an initial stage in the development of a shock wave downstream of 
the throat. There are undulations in the portion of the nozzle wall downstream 
of the throat, which follow from the rapid changes in Z’(S). This boundary con- 
dition goes with the similarity solution for, as mentioned previously, there is 
no freedom to choose the streamline shape in the present case. Nevertheless, 
figure 6 ( d )  depicts flow through a nozzle with a throat or section of minimum 
area. 
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FIGURE 7. Detailed plot of nozzle contours for p = 0.25, 8 = 0.1, c = 1.0. -, 
Meyer solution; - - - - , curve A ; - - -, curve B ; -0-0-, curve C. The Meyer solution 
and curve C merge upstream. 

The wall streamlines of figure 6 are shown in greater detail in figure 7. The 
nozzle contour of figure 6 (d) coincides with the Meyer-flow contour upstream of 
the throat while far downstream this contour (curve C) approaches the shallower 
Taylor-type contour. This result is not surprising since the flow in figure 6(d)  does 
change from a Meyer to a Taylor type of flow downstream of the throat. 

5. Discussion 
By including the effect of longitudinal viscosity in the equation for plane 

transonic flow it has been possible to  obtain solutions which provide a smooth 
transition from the Taylor- to the Meyer-type of nozzle flow, and which show 
what happens in the initial stages of shock formation downstream of the nozzle 
throat. The difficulties near the sonic point, so characteristic of the inviscid 
analysis, disappear when the nozzle problem is formulated in terms of the 
viscous transonic equation. While these solutions are exact, they are purchased 
a t  the penalty of not being able to specify an arbitrary nozzle-wall shape. 

The solution obtained here is in some sense related to Taylor’s weak-shock 
solution (Taylor 1910) describing the viscous transition between uniform, super- 
sonic and subsonic flows. The viscous transonic solution yields a viscous transition 
between a supersonic flow of increasing and a subsonic flow of decreasing velocity. 
In  each case viscous effects vanish upstream and downstream of the transition. 
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As the maximum value of the centreline velocity V ( X ,  0 )  increases the viscous 
transonic transition appears to approach the Taylor weak shock structure. 

The horizontal scale of the portion of the nozzle flow under consideration here 
is of the order of 7, the thickness of a weak shock wave, while the vertical scale 
h is of the order of 71.. Unless E < 1, and the flow is one of low density, the throat 
width of the nozzles under consideration here will be extremely small. For example 
for nitrogen at 27.P0C, with (p = 1 atm, and e = 0.1, r - O(0-001 mm) while 
h - O(O.01mm). On the other hand, with p = 0-Olatm, and E = 0.01, 
7 = O( 1.0 mm) while h N O( 100 mm), which is certainly of a more reasonable 
magnitude. 

It will be difficult to obtain a precise experimental verification of the results 
obtained here. The presence of the nozzle-wall boundary layer will make it 
difficult to reproduce bounding streamlines or nozzle contours which agree 
exactly with the streamlines obtained from the similarity solution, and slight 
shifts of the boundary can cause relatively large changes in transonic flow. 
The region of interest will be extremely small unless the density is low, and 
only slight deviations from the sonic velocity are considered. Under such con- 
ditions it is difficult to make accurate velocity and density measurements. 

Clearly the present investigation touches on the problem of whether it is 
possible to have regions of supersonic flow embedded in a subsonic flow with- 
out the existence of shock waves. Extensive investigations of this problem 
based on the inviscid transonic equation have been made and are, for example, 
discussed by Manwell (1958, 1963), who, with others, concludes that i t  is not 
in general possible to obtain smooth inviscid solutions for the transonic flow 
in such regions. A detailed discussion of this problem in the light of the viscous 
transonic equation is beyond the scope of the present paper; however, the 
existence of supersonic regions within regions of subsonic flow does not appear 
to result in any difficulties when viscous effects are taken into account. This 
is not a surprising result for the viscous transonic equation inherently contains 
the possibility of formation of steady shock structures where required by the 
conditions of the flow, while the inviscid equations do not. Whether, in general, 
the proper inclusion of viscous effects can eliminate the difficulties encountered 
by Manwell and others in constructing transonic solutions is certainly a worth- 
while subject for future investigation. 

There are two basic differences between Szaniawski’s (1964a, b)  studies of 
viscous, transonic nozzle flow and the present work. While Szaniawski permits 
an arbitrary nozzle contour his solutions are approximate rather than exact as 
in the present case. Also the expansion scheme used by Szaniawski is different. 
The nozzle half height is used as the characteristic flow dimension with the result 
that while (y/L) N O(1) the dimensionless co-ordinate corresponding to Y in 
the present paper has a maximum value of O ( d )  and u N 0(e2). As a consequence 
the velocity U is a function of X only in the first-order series solution, and to 
obtain details of the flow field, in particular a non-trivial result for the shape 
of the sonic lines, it is necessary to compute the second-order coefficient ~ ( 2 ) .  

In  the expansion schemes used here Y N O(1) and all details of the flow are 
recovered from the first-order solution. Szaniawski finds, as in the present paper, 
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that in the Taylor flow viscous effects become crucial near the nozzle throat as 
the maximum velocity approaches the sonic value. 
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